Proof of a conjecture of Pólya on the zeros of successive derivatives of real entire functions

نویسندگان

  • Walter Bergweiler
  • Alex Eremenko
چکیده

We prove Pólya’s conjecture of 1943: For a real entire function of order greater than 2 with finitely many non-real zeros, the number of non-real zeros of the n-th derivative tends to infinity as n → ∞ . We use the saddle point method and potential theory, combined with the theory of analytic functions with positive imaginary part in the upper half-plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of real critical points of logarithmic derivatives and the Hawaii conjecture

For a given real entire function φ with finitely many nonreal zeros, we establish a connection between the number of real zeros of the functions Q = (φ/φ) and Q1 = (φ /φ). This connection leads to a proof of the Hawaii conjecture [T.Craven, G.Csordas, and W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture, Ann. of Math. (2) 125 (1987), 405–431] stating that th...

متن کامل

Karlin’s Conjecture and a Question of Pólya

The paper answers an old question of Pólya involving Descartes’ Rule of Signs and a related conjecture of Karlin involving the signs of Wronskians of entire functions and their derivatives. Counterexamples are given along with classes of functions for which the conjecture is valid. 0. Introduction. The purpose of this paper is to answer an old unsolved question of Pólya (c. 1934) and to resolve...

متن کامل

On the Existence of Generalized Pólya Frequency Functions Corresponding to Entire Functions with Zeros in Angular Sectors Generalized Pólya Frequency Functions

Generalized Pólya frequency functions are introduced through inverse Mellin transformations of the reciprocals of real entire functions with all zeros in sectors A and −Aφ for 0 ≤ φ ≤ π4 , where A := {z ∈ C | | arg z| ≤ φ}. It is shown that the constant π4 is best possible in this context.

متن کامل

Some difference results on Hayman conjecture and uniqueness

In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008